$$y=\frac{(x^2-2x-9)+9+9}{x^2-2x-9}=1+\frac{18}{x^2-2x-9}$$ Now we know that $$x^2-2x-9=(x^2-2x+1) -1 -9 = (x-1)^2-10 \ge -10$$
Thus
$$\frac{1}{x^2-2x-9} \in (-\infty,-0.1] \cup(0, +\infty)$$
Thus
$$y \in (-\infty, -0.8] \cup (1, +\infty)$$
$$y=\frac{(x^2-2x-9)+9+9}{x^2-2x-9}=1+\frac{18}{x^2-2x-9}$$ Now we know that $$x^2-2x-9=(x^2-2x+1) -1 -9 = (x-1)^2-10 \ge -10$$
Thus
$$\frac{1}{x^2-2x-9} \in (-\infty,-0.1] \cup(0, +\infty)$$
Thus
$$y \in (-\infty, -0.8] \cup (1, +\infty)$$