I will assume that he doesn't tell the same joke twice (or three times) in the same lecture. Else, here is a counterexample:
Let $\\{a_1, \ldots, a_9\\}$ be the set of jokes. On the $i$-th day for $1 \leq i \leq 9$, tell jokes $(a_i, a_i, a_i)$. Then tell $(a_1, a_2, a_3)$, $(a_4, a_5, a_6)$, $(a_7, a_8, a_9)$ and $(a_1, a_4, a_7)$.
So, now towards the exercise. Every day the professor tells $3$ distinct pairs of jokes. Which means in total he tells $39$ pairs of jokes over the $13$ days. There are $\frac{9!}{7!2!}= 36$ pairs of jokes he can tell. So he must tell at least one pair of jokes twice.