For any $\epsilon>0$
$$P\left\\{d\left((X_n,Y_n),(X,Y)\right)>\epsilon\right\\}\le P\\{|X_n-X|>\epsilon/\sqrt{2}\\}+P\\{|Y_n-Y|>\epsilon/\sqrt{2}\\}\to 0.$$
Here, $d(z, w)=\|z-w\|_2$.
For any $\epsilon>0$
$$P\left\\{d\left((X_n,Y_n),(X,Y)\right)>\epsilon\right\\}\le P\\{|X_n-X|>\epsilon/\sqrt{2}\\}+P\\{|Y_n-Y|>\epsilon/\sqrt{2}\\}\to 0.$$
Here, $d(z, w)=\|z-w\|_2$.