Artificial intelligent assistant

Tautological Implication of Conditional Statements Does $P \Rightarrow Q $ and $Q \Rightarrow R$ tautologically imply $(P \land Q)\Rightarrow(Q\land R)$ and $(P\lor Q)\Rightarrow(Q\lor R) $? \begin{array}{llr} 1\. & P \Rightarrow Q & \\\ 2\. & Q \Rightarrow R & \\\ 3\. & (P \land Q)\Rightarrow(Q\land R)&TI,2,3 \\\ 4\. & (P\lor Q)\Rightarrow(Q\lor R) &TI,2,3 \end{array} Thank you very much for your help in advance!

Yes. Just informally:

For the first one: if $P \land Q$, then $Q$, and thus (given $Q \rightarrow R$) you get $R$. So you have $Q$ and $R$, and so $Q \land R$

For the second: if $P \lor Q$, then either $P$ or $Q$ (or both). If $Q$, then certainly $Q \lor R$, and if $P$, then (given $P \rightarrow Q$) we get $Q$, so again we get $Q \lor R$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy a6d607d6d10bbb2532263a0f470922ac