Yes. Just informally:
For the first one: if $P \land Q$, then $Q$, and thus (given $Q \rightarrow R$) you get $R$. So you have $Q$ and $R$, and so $Q \land R$
For the second: if $P \lor Q$, then either $P$ or $Q$ (or both). If $Q$, then certainly $Q \lor R$, and if $P$, then (given $P \rightarrow Q$) we get $Q$, so again we get $Q \lor R$