$$\oint\limits_{|z-i|=2}\frac{1}{z^2+4}dz=\oint\limits_{|z-i|=2}\frac{\frac{1}{z+2i}}{z-2i}dz=\left.2\pi i\left(\frac{1}{z+2i}\right)\right|_{z=2i}=2\pi i\frac{1}{4i}=\frac{\pi}{2}$$
Now, **why** did I do the above the way I did? Draw a picture of the circle $\,|z-i|=2\,$ and try to locate the poles of the integrand function _inside_ the circle.