Assume that the $\sup E$ exists, thus there is some number $b \in R_{>0}$ s.t $\forall(x+y), x,y \in R_{>0}$ then $b \geq (x+y)$, but then $b+1$ is a sum of two numbers in $R_{>0}$ and $b+1>b$, contradiction.
Assume that the $\sup E$ exists, thus there is some number $b \in R_{>0}$ s.t $\forall(x+y), x,y \in R_{>0}$ then $b \geq (x+y)$, but then $b+1$ is a sum of two numbers in $R_{>0}$ and $b+1>b$, contradiction.