Choose $A = \begin{bmatrix} 200 & 100 \\\ 100 & 100 \end{bmatrix}$, $W = \frac{1}{10}\begin{bmatrix} 1 & 0 \\\ 0 & 9 \end{bmatrix}$, then $$A-WAW = \begin{bmatrix} 198 & 91 \\\ 91 & 19 \end{bmatrix},$$ which is not $\geq 0$ (since $198\cdot19-91^2 < 0$).