Given $A\in \textsf{M}_{m\times n}(F)$, their conjugate transpose $A^*\in \textsf{M}_{n\times m}(F)$ is defined as $$(A^*)_{ij}=\overline{A_{ji}}$$ for $1\le i\le n$, $1\le j\le m$. If $F=\mathbb{R}$, then $\overline{A_{ji}}=A_{ji}$. So, yes, it's correct to say that $$A^*=A^t$$