Again, $(ab)^{\text{ord}_n(ab)}\equiv1\pmod n$
Now if $c^m\equiv1$ and let $m=q\cdot\text{ord}_nc+r\ \ \ \ (1)$ where $0\le r<\text{ord}_nc$
$c^m=(c^{\text{ord}_nc})^q\cdot c^r$
$\implies1\equiv1^q\cdot c^r\pmod n\implies c^r\equiv1$
But by definition $\text{ord}_nc$ is the smallest positive integer value of $u$ such that $c^u\equiv1$
$\implies r=0,$ use this in $(1)$