Let $M^{(n)}$ and $N^{(n)}$ denote $M$ and $N$ stopped at $\sigma_n\wedge\tau_n$. These are both bounded martingales. Form $X^{(n)}_t:=N^{(n)}_{t\wedge\tau}(M^{(n)}_{t\wedge\tau}-M^{(n)}_t)$. As previously noted (now corrected), $$ X^{(n)}_t=\cases{0,&$0\le t<\tau$,\cr N^{(n)}_\tau(M^{(n)}_{\tau}-M^{(n)}_t),&$t\ge \tau$.\cr} $$ Now decompose (for $0\le s