A Boolean operator $f(x_1, \dotsc, x_n)$ is _self-dual_ iff $ f(\
eg x_1, \dotsc, \
eg x_n) = \
eg f(x_1, \dotsc, x_n)$.
In the case of the Sheffer stroke (NAND), $(p|q) \equiv \
eg (p \land q) \equiv (\
eg p \lor \
eg q)$, so $(\
eg p | \
eg q) \equiv (p\lor q)$, whereas $\
eg (p|q) \equiv (p \land q)$. As $\lor$ and $\land$ are distinct Boolean functions, $|$ isn't self-dual.