Let $\epsilon >0$ For the Archimedean property, there exist $N \in \mathbb{N}$, such that $N\epsilon>1 $, so $\frac{1}{N}< \epsilon$
Let $\epsilon >0$ For the Archimedean property, there exist $N \in \mathbb{N}$, such that $N\epsilon>1 $, so $\frac{1}{N}< \epsilon$