You can also see it by interchanging the order of integrals. We have
\begin{eqnarray*} \int_{0}^{\infty}(1-F_{X}(x))dx=\int_{0}^{\infty}P(X>x)dx & = & \int_{0}^{\infty}\int_{x}^{\infty}dF_{X}(t)dx\\\ & = & \int_{0}^{\infty}\int_{0}^{t}dF_{X}(t)dx\\\ & = & \int_{0}^{\infty}t\;dF_{X}(t) \end{eqnarray*} and, \begin{eqnarray*} \int_{-\infty}^{0}F_{X}(x)dx=\int_{-\infty}^{0}P(X\leq x)dx & = & \int_{-\infty}^{0}\int_{-\infty}^{x}dF_{X}(t)dx\\\ & = & \int_{-\infty}^{0}\int_{t}^{0}dF_{X}(t)dx\\\ & = & \int_{-\infty}^{0}-t\;dF_{X}(t) \end{eqnarray*} Since, $$ E[X]=\int_{-\infty}^{0}t\;dF_{X}(t)+\int_{0}^{\infty}t\;dF_{X}(t) $$ the result follows.