The series is the exponential function with the arguement $xy \frac{dy}{dx}$ so the equation is \begin{eqnarray*} x= e^{ xy \frac{dy}{dx}} \end{eqnarray*} Take logarithms & integrate ... we have \begin{eqnarray*} y^2= (ln x)^2 +C \end{eqnarray*}
The series is the exponential function with the arguement $xy \frac{dy}{dx}$ so the equation is \begin{eqnarray*} x= e^{ xy \frac{dy}{dx}} \end{eqnarray*} Take logarithms & integrate ... we have \begin{eqnarray*} y^2= (ln x)^2 +C \end{eqnarray*}