By definition, $\lim_{n\to\infty} a_n=+\infty$ if for all $M>0$, there exists $N$ such that $n\geqslant N$ implies $a_n > M$.
So let $M>0$. You've shown that $\\{a_n\\}$ is unbounded, so $M$ cannot be an upper bound for $\\{a_n\\}$. Therefore there exists an $N$ such that $a_N > M$. Then if $n\geqslant N$, $$a_n\geqslant a_N > M,$$ so that $a_n\to+\infty$.