Algebraic (general user).
We have $(4a-3b)^2\ge0$, so expanding $16a^2-24ab+9b^2\ge0$. Hence $25(a^2+b^2)\ge(9a^2+24ab+16b^2)$ or $5c\ge 3a+4b$.
Hence $8a+9b\le5(a+b+c)$ or $1.6a+1.8b\le a+b+c$. Since $1.6>\sqrt2$ and $1.8>\sqrt3$ this implies $a\sqrt2+b\sqrt3