With your assistance, and this was alot of fun,
$$\left(0<\lim_{n\to\infty}\frac{a_n}{b_n}<\infty\right)\Rightarrow \left(\sum{a_n}=\pm\infty\wedge\sum{b_n}=\pm\infty \right)\vee \left(\sum{a_n}\in\mathbb{R}\wedge\sum{b_n}\in\mathbb{R} \right).$$
With your assistance, and this was alot of fun,
$$\left(0<\lim_{n\to\infty}\frac{a_n}{b_n}<\infty\right)\Rightarrow \left(\sum{a_n}=\pm\infty\wedge\sum{b_n}=\pm\infty \right)\vee \left(\sum{a_n}\in\mathbb{R}\wedge\sum{b_n}\in\mathbb{R} \right).$$