Artificial intelligent assistant

Limit Comparison Test Defined entirely in symbolic notation Is it possible to define the limit comparison test entirely with symbols (no textual explanation), or with as little textual explanation as possible? How? My latest best attempt: $0<\lim_{n\to\infty}\frac{a_n}{b_n}<\infty\implies \sum{a_n}=\infty(XOR)\sum{b_n}=\infty$

With your assistance, and this was alot of fun,

$$\left(0<\lim_{n\to\infty}\frac{a_n}{b_n}<\infty\right)\Rightarrow \left(\sum{a_n}=\pm\infty\wedge\sum{b_n}=\pm\infty \right)\vee \left(\sum{a_n}\in\mathbb{R}\wedge\sum{b_n}\in\mathbb{R} \right).$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy a04ced6b522be1b584d8ca7d1b651d68