Since the random variable does not take values before $0$, $$ F(0) = 0 $$ Since the random variable can take on any nonnegative value, we must have: $$ \lim_{x \to \infty} F(x) = 1 $$ Using these facts we see that:
> $$\begin{align}F(0) &= 0 & \lim_{x \to \infty} F(x) &= 1 \\\ A + Be^0 &= 0 & \lim_{x \to \infty} \left[ A + Be^{-x} \right] &= 1 \\\ A + B &= 0 & A &= 1 \\\ 1 + B &= 0 \\\ B &= -1\end{align}$$