Artificial intelligent assistant

Boson operator algebra - unitary transformation What is the simple way to evaluate $$ e^{i \alpha n(n-1)}a^{\dagger} e^{-i \alpha n(n-1)}$$ and $$ e^{i \alpha n(n-1)}a e^{-i \alpha n(n-1)}$$ where $n=a^\dagger a$ and $a$ and $a^\dagger$ are the boson annihilation/creation operators for bosons and $\alpha$ is a constant?

You can evaluate them on states with definite particle number. Let $|k\rangle$ be a state such that $n|k\rangle=k|k\rangle$. Then

\begin{eqnarray*} \mathrm e^{\mathrm i \alpha n(n-1)}a^\dagger\mathrm e^{-\mathrm i \alpha n(n-1)}|k\rangle &=& \mathrm e^{\mathrm i \alpha n(n-1)}a^\dagger\mathrm e^{-\mathrm i \alpha k(k-1)}|k\rangle \\\ &=& \mathrm e^{\mathrm i \alpha (k+1)k}a^\dagger\mathrm e^{-\mathrm i \alpha k(k-1)}|k\rangle \\\ &=& \mathrm e^{2\mathrm i \alpha k}a^\dagger|k\rangle \\\ &=& a^\dagger\mathrm e^{2\mathrm i \alpha n}|k\rangle\;. \end{eqnarray*}

Since $|k\rangle$ was arbitrary and the states with definite particle number span the state space, this implies

$$ \mathrm e^{\mathrm i \alpha n(n-1)}a^\dagger\mathrm e^{-\mathrm i \alpha n(n-1)}=a^\dagger\mathrm e^{2\mathrm i \alpha n}\;. $$

Analogously, you can obtain

$$ \mathrm e^{\mathrm i \alpha n(n-1)}a\mathrm e^{-\mathrm i \alpha n(n-1)}=a\mathrm e^{-2\mathrm i \alpha(n-1)}\;. $$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 9ee227045ab4448122a9a1371dcf2a78