Let $p_j(x) = a+b(x_j-x)+c(x_j-x)^2$, where $a,b,c \in R$ are unknowns. Then we have $a = p_j(x_j)=u_j$. So, $p_j(x) = u_j+b(x_j-x)+c(x_j-x)^2$. Now, using $x_j-x_{j-1}=x_{j+1}-x_j=h$, we get $p_j(x_{j-1})=u_j+bh+ch^2=u_{j-1}$ and $p_j(x_{j+1})=u_j-bh+ch^2=u_{j+1}$. Solving for $b$ and $c$ gives $b=\frac{u_{j-1}-u_{j+1}}{2h}$ and $c=\frac{u_{j-1}+u_{j+1}-2u_j}{2h^2}$. Thus, $p_j(x)=u_j+\frac{u_{j-1}-u_{j+1}}{2h}(x_j-x)+\frac{u_{j-1}+u_{j+1}-2u_j}{2h^2}(x_j-x)^2$. Expanding this expression, you can obtain the desired coefficients.