Apply WAT to $f'$ to get a polynomial $q_n$ with $|f'(x)-q_n(x)|< \frac1{2nK}$. Let $p_n$ be an antiderivative of $q_n$ with $p_n(0)=f(0)$. Then, setting $g_n=f-p_n$, we have $$|g_n'(x)| = |f'(x)-p_n'(x)|=|f'(x)-q_n(x)|< \frac1{2nK},$$ and \begin{align*} |g_n(x)| &\leq |f(x)-p_n(x)| \\\ &= \left|\int_0^x (f'(t)-p_n'(t))\ dt\right|\\\ &\leq \left|\int_0^x |f'(t)-p_n'(t)|\ dt\right|\\\ &\leq \left|x\cdot \frac1{2nK}\right| \\\ &\leq K\cdot \frac1{2nK} = \frac1{2n}. \end{align*} Therefore, $$|g_n(x)|+|g_n'(x)| < \frac1{2nK}+\frac1{2n} <\frac1n$$