Formula for arc length is $$L=\int_{\frac18}^1\sqrt{1+\left(y'\right)^2}dx$$ It is easy to find the derivative: $$y'=-\frac{\sqrt{1-x^{\frac23}}}{x^\frac13}$$ The length is now: $$\begin{align}L&=\int_{\frac18}^1\sqrt{1+\left(-\frac{\sqrt{1-x^{\frac23}}}{x^\frac13}\right)^2}dx\\\&=\int_{\frac18}^1x^{-\frac13}dx\\\&=\left.\frac32x^\frac23\right|_\frac18^1\\\&=\frac98\end{align}$$
![](