Do prime factorization on $110$. It's $110 = 5 \cdot 2 \cdot 11$.
Now work with the prime factors as moduli.
$$7^{50} \cdot 4^{102} \equiv 0 \pmod 2 \text{ trivial, as 2 \mid 4}$$
Then apply Fermat's Little Theorem so we have:
$$7^4 \equiv 1 \pmod 5 \implies 7^{50} \equiv 49 \equiv 4 \pmod 5$$ $$4^4 \equiv 1 \pmod 5 \implies 4^{102} \equiv 4^2 \equiv 1 \pmod 5$$
Now multiply them and we have:
$$7^{50} \cdot 4^{102} \equiv 4 \cdot 1 \equiv 4 \pmod 5$$
Now repeat the method with the last factor:
$$7^{10} \equiv 1 \pmod {11} \implies 7^{50} \equiv 1 \pmod {11}$$ $$4^{10} \equiv 1 \pmod {11} \implies 4^{102} \equiv 4^2 \equiv 16 \equiv 5 \pmod {11}$$
Multiply them and we have:
$$7^{50} \cdot 4^{102} \equiv 1 \cdot 5 \equiv 5 \pmod {11}$$
Now just apply CRT to the three congruence relation to get the final answer.