If you accept the analogies
$$c_0 \leftrightarrow \mathcal{K}(\ell_2),$$ $$\ell_\infty \leftrightarrow \mathcal{B}(\ell_2),$$
then you also have $$C(\beta\mathbb N \setminus\mathbb N) \leftrightarrow \mathcal{B}(\ell_2)/\mathcal{K}(\ell_2),$$
as $C(\beta \mathbb N\setminus \mathbb N)\cong \ell_\infty / c_0$ and $C(\beta \mathbb N\setminus \mathbb N)$ is encoded by its spectrum $\beta \mathbb N\setminus \mathbb N$ (by the Gelfand-Kolmogorov theorem, for example).
The algebra $\ell_\infty$ is the canonical diagonal masa in $\mathcal{B}(\ell_2)$ and so $\ell_\infty / c_0$ is the canonical diagonal masa in the Calkin algebra. Thus, you have one more analogy.