Yes if $C$ is a simple closed curve, $\textbf{v}:\mathbb{R}^m\rightarrow \mathbb{R}^m$ and$$\oint_{C} \textbf{v}\;d\textbf{r}=0,$$ then it follows that $\textbf{v}=\
abla f$ for some scalar function $f:\mathbb{R}^m\rightarrow \mathbb{R}$.
Yes if $C$ is a simple closed curve, $\textbf{v}:\mathbb{R}^m\rightarrow \mathbb{R}^m$ and$$\oint_{C} \textbf{v}\;d\textbf{r}=0,$$ then it follows that $\textbf{v}=\
abla f$ for some scalar function $f:\mathbb{R}^m\rightarrow \mathbb{R}$.