Artificial intelligent assistant

Proof explanation $A\setminus B = A \setminus B \cap A$ $A\setminus B = A \setminus B \cap A$ Proof $A\setminus B \subseteq A \setminus B \cap A$: $x\in A\setminus B \to x\in A \land x \notin B$ $x\in A \land (x \notin B \color{red}{\lor x\notin A})$ $x \in A \land (x\notin B \cap A)$ $x \in A\setminus B\cap A$ Proof $A \setminus B \cap A \subseteq A\setminus B$: $x \in A \setminus B \cap A \to x\in A \land x\notin B \cap A$ $x \in A \land (x\notin B \color{red}{\lor x\notin A})$ $x \in A \land x \notin B$ $x \in A \setminus B $ Therefore $A\setminus B = A \setminus B \cap A$ I am confused how the stuff in the red is formed. Can we add an or statement to anything and ignore if its true or not if the first part of the or is true?

I'd write the proof in this way

$x\in A\setminus B \Rightarrow x\in A \land x\
otin B\Rightarrow x\in A \land (x\
otin A\lor x\
otin B)\\\\\Rightarrow x\in A\land \
eg(x\in A\land x\in B)$ by De Morgan's law

$ x\in A\land x\
otin A\cap B\Rightarrow x\in A\setminus(A\cap B) \Rightarrow A\setminus B \subseteq A \setminus (B \cap A)$

$x\in A \setminus (B \cap A)\Rightarrow x\in A \land x\
otin (A\cap B) \Rightarrow x\in A \land \
eg (x\in A \land x\in B)\\\ \Rightarrow x\in A \land x\
otin A \lor x\
otin B$ again for De Morgan's

$x\in A \land x\
otin B\Rightarrow x\in A\setminus B\Rightarrow A \setminus (B \cap A)\subseteq A\setminus B$

Therefore

$A\setminus B = A \setminus (B \cap A)$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 9d25eba355aa1e68b044e30a57ffa48e