It may become more intuitive if you introduce event $A0$ as student $1$ occupying any box.
Students $2,3,4$ have to successively occupy a slot from the still **unoccupied group(s)** of $4$ slots
$A0:\;\square\square\fbox{1} \square \quad\square\square \square\square\quad\square\square\square \square\quad\square\square\square \square\quad Pr = 1 $
$A1:\;\square\square\fbox{1} \square \quad\square\square \square\square\quad\fbox{2}\square\square\square\quad\square\square\square \square\quad Pr = 1\cdot \frac{12}{15} $
$A2:\;\square\square\fbox{1} \square \quad\square\square \square\square\quad\fbox{2}\square\square \square\quad\square\square\square \fbox{3}\quad Pr = 1\cdot \frac{12}{15}\cdot\frac8{14} $
$A3: \;\square\square\fbox{1}\square\quad\square\fbox{4}\square\square\quad\fbox{2}\square\square\square\quad\square\square\square \fbox{3}\quad Pr = 1\cdot \frac{12}{15}\cdot\frac8{14}\cdot\frac4{13} $
We are simply using the multiplication law for dependent events.