Note that \begin{eqnarray*} \tan^{-1}(x)+\tan^{-1}(1/x)=\frac{\pi}{2}. \end{eqnarray*} and \begin{eqnarray*} I= \int_{1/2014}^{2014} \frac{\tan^{-1}(x)}{x} dx =\frac{\pi}{2} \int_{1/2014}^{2014} \frac{dx}{x} + \int_{1/2014}^{2014} \frac{\tan^{-1}(1/x)}{1/x} \frac{-dx}{x^2}. \end{eqnarray*} Now substitute $u=1/x$ in the latter integral to obtain $-I$. ... should be a doddle from here ?