Recall that the limit for $e^x$ is as follows:
$$\lim_{n \to \infty} \left(1+{x \over n}\right)^{n}$$
So to achieve $\frac{1}{e}$, $x$ must be $-1$. You get this by using $a=1$ and $b=-1$ and factoring:
$$\require{cancel} \lim_{n\rightarrow\infty}\left(1+\frac{n+1}{-n^2+n+2}\right)^{n+2}=\lim_{n\rightarrow\infty}\left(1+\frac{\cancel{n+1}}{-1(n-2)(\cancel{n+1})}\right)^{n+2}=\lim_{n\rightarrow\infty}\left(1-\frac{1}{n-2}\right)^{n+2}$$
And using some manipulation:
$$\lim_{n\rightarrow\infty}\left(1-\frac{1}{n-2}\right)^{n+2}=\lim_{n\rightarrow\infty}\left[\left(1-\frac{1}{n-2}\right)^{n-2}\right]^{n+2\over n-2}= \left({1 \over e}\right)^1$$