Artificial intelligent assistant

How to derive the gregory series for inverse tangent function? How to derive the Gregory series for the inverse tangent function? Why is Gregory series applicable only to the set $ [-\pi/4,\pi/4] $ ?

A fast way is by exploiting $\arctan'(x)=\dfrac1{1+x^2}$.

The Taylor series of that derivative is easily established to be the sum of a geometric series of common ratio $-x^2$,

$$\sum_{k=0}^\infty(-x^2)^k=\frac1{1-(-x^2)},$$ which only converges for $x^2<1$.

Then integrating term-wise,

$$\arctan(x)=\int_0^x\frac{dx}{1+x^2}=\sum_{k=0}^\infty\frac{(-1)^kx^{2k+1}}{2k+1}.$$

* * *

Alternatively, assume that you know

$$\ln(1+z)=-\sum_{k=1}^\infty\frac{(-z)^k}{k}.$$

Then with $z=ix$,

$$\ln(1+ix)=\ln\left(\sqrt{1+x^2}\right)+i\arctan(x)=-\sum_{k=1}^\infty\frac{(-ix)^k}{k}.$$

The imaginary part of this identity gives

$$\arctan(x)=\sum_{odd\ k}(-1)^{(k-1)/2}\frac{x^k}k$$

while the real part gives the extra

$$\ln\left(\sqrt{1+x^2}\right)=\sum_{even\ k>0}(-1)^{k/2-1}\frac{x^k}k.$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 99e72fa2609fa6693626b1a86ba44a2f