Yes, here is the proof.
$\alpha\wedge{*}\beta=<\alpha,\beta>\Omega_{g}$, this is the definition of hodge star.
Pullback by $\varphi$, we get:
$LHS=\varphi^{*}(\alpha\wedge{*_{g}}\beta)=\varphi^{*}\alpha\wedge\varphi^{*}{*_{g}}\beta$
$RHS=\varphi^{*}(<\alpha,\beta>\Omega_{g})=\varphi^{*}<\alpha,\beta>\Omega_{\varphi^{*}g})=<\varphi^{*}\alpha,\varphi^{*}\beta>\Omega_{\varphi^{*}g}=\varphi^{*}\alpha\wedge*_{\varphi^{*}g}\varphi^{*}\beta$.
Since $\alpha,\beta$ are arbitrarily given, compare both sides we get the conclusion.