These are three different maps, if you call
$$ x_{n+1} = f(x_n) $$
then the function $f$ is different for all the naps you mentioned, and so is the dynamics they generate. More precisely, the skewed tent map can be reduced to the tent map by a particular choice of parameters
* Tent map $$ f(x) = a(1 - |2x - 1|) $$
* Bernoulli shift map
$$ f(x) = \begin{cases} 2x, & \mbox{for}\quad 0\le x \le 1/2 \\\ 2x - 1, & \mbox{for}\quad 1/2< x \le 1\end{cases} $$
* Skew tent map
$$ f(x) = \begin{cases} \
u + (1 - \
u)x/\mu, & \mbox{for}\quad 0\le x \le \mu \\\ (1 - x) / (1- \mu), & \mbox{for}\quad \mu< x \le 1\end{cases} $$
Note that the tent map can be recovered by setting $\
u =0$ and $\mu = 1/2$
The figure below shows a plot of $f(x)$ for these three cases
![enter image description here](