$$\frac{2x^2}{1+x^2}=2-\frac2{1+x^2}\implies$$
$$a_n=\left.\int_1^n\frac{2x^2}{1+x^2}dx=\left(2x-2\arctan x\right)\right|_1^n=2n-2\arctan n-2+\frac\pi2\implies$$
$$\frac{4n-4-2a_n}\pi=\frac{4\arctan n}\pi-1\implies$$
$$\left(\frac{4n-4-2a_n}\pi\right)^n\xrightarrow[n\to\infty]{}...$$
For the last limit, you may want to use the exponential function:
$$\lim_{n\to\infty}n\log\left(\frac{4\arctan n}\pi-1\right)=\lim_{n\to\infty}\frac{\log\left(\frac{4\arctan n}\pi-1\right)}{\frac1n}\stackrel{l'H}=$$
$$=\lim_{n\to\infty}\frac{\frac\pi{4\arctan n-\pi}\frac4{\pi(1+n^2)}}{-\frac1{n^2}}=-\frac4\pi$$