Artificial intelligent assistant

Simpler way to compute a definite integral without resorting to partial fractions? I found the method of partial fractions very laborious to solve this definite integral : $$\int_0^\infty \frac{\sqrt[3]{x}}{1 + x^2}\,dx$$ Is there a simpler way to do this ?

Perhaps this is simpler.

Make the substitution $\displaystyle x^{2/3} = t$. Giving us

$\displaystyle \frac{2 x^{1/3}}{3 x^{2/3}} dx = dt$, i.e $\displaystyle x^{1/3} dx = \frac{3}{2} t dt$

This gives us that the integral is

$$I = \frac{3}{2} \int_{0}^{\infty} \frac{t}{1 + t^3} \ \text{d}t$$

Now make the substitution $t = \frac{1}{z}$ to get

$$I = \frac{3}{2} \int_{0}^{\infty} \frac{1}{1 + t^3} \ \text{d}t$$

Add them up, cancel the $\displaystyle 1+t$, write the denominator ($\displaystyle t^2 - t + 1$) as $\displaystyle (t+a)^2 + b^2$ and get the answer.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 962a43c72cd030e11e36d3cb1c57d5d3