The first term on the right should be $-||x_0||^{2}$. Now $||x-x_0||^{2} =||x||^{2}+||x_0||^{2} -2 \langle x,x_0 \rangle $. Since $||x-x_0||^{2} \geq 0$ this gives $||x||^{2} \geq -||x_0||^{2}+2 \langle x,x_0 \rangle$. Now $2\langle x,x_0 \rangle =\langle x_0,2x-x_0 \rangle +||x_0||^{2} \geq \langle x_0,2x-x_0 \rangle$ which gives the required inequality.