**Claim.** For $\mu_{\mathrm{B}} + \mu_{\mathrm{C}} \leq \mu$ it is a necessary and sufficient condition that $\mu(\mathrm{B} \cap \mathrm{C}) = 0.$
_Proof._ If $\mu(\mathrm{B} \cap \mathrm{C}) = 0$ then $\mu_{\mathrm{B}} = \mu_{\mathrm{B} \setminus \mathrm{C}},$ and similarly interchanging the rôles of $\mathrm{B}$ and $\mathrm{C}.$ Hence, $\mu_{\mathrm{B}} + \mu_{\mathrm{C}} = \mu_{(\mathrm{B} \setminus \mathrm{C}) \cup (\mathrm{C} \setminus \mathrm{B})} \leq \mu_{\mathrm{X}} = \mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $\mu_{\mathrm{B}} + \mu_{\mathrm{C}} \leq \mu$ in $\mathrm{B} \cap \mathrm{C}$ to reach $0 \leq 2 \mu(\mathrm{B} \cap \mathrm{C}) \leq \mu(\mathrm{B} \cap \mathrm{C}),$ hence $\mu(\mathrm{B} \cap \mathrm{C}) = 0.$ Q.E.D.