$$ \large \Phi^{-1}=(e)^{\left[\displaystyle\int\left(\frac{\big(\cos^{-1}\sqrt{1-x^2}\big)^{-1}}{\ln\frac{\big(sin^{-1}\big(2x\sqrt{1-x^2}\big)\big)}{\pi}}\right)dx\right]}$$ The integral itself evaluates to: $$-\ln\left[\ln\left(\frac{2\arccos(x)}{\pi}\right)\right] + C $$ [Note: Ignore the C as stated in the question (i.e. it's zero)]. Therefore, it becomes $$\large \Phi=\frac{1}{e^{-\ln\left[\ln\left(\frac{2\arccos(x)}{\pi}\right)\right]}}=\ln\left(\frac{2\arccos(x)}{\pi}\right)$$ Therefore $$\color{red} {\large e^\Phi= \frac{2\arccos(x)}{\pi}}$$
* * *
On evaluating, $$\large\Omega=\sqrt{2\pi}$$Therefore $$\color{red}{\large\Omega^2=2\pi}$$
* * *
On evaluating,$$\large \Psi= 4\arccos(x)$$Therefore$$\color{red}{\large \Psi^{-1}= \frac{1}{4\arccos(x)}}$$
* * *
Therefore: $$\color{red}{\Large \xi= (e^\Phi)(\Omega^2)(\Psi^{-1})=1}$$