Let me consider only the $x\to+\infty$ case, as the other case follows trivially. Substituting $x\mapsto e^x$ shows $$\lim_{x\to\infty}\frac{\ln x}x=\lim_{x\to\infty}\frac x{e^x}=0$$ Now $$0\le\frac{\ln(x^2+1)}x\le\frac{\ln(2x^2)}x=\frac{\ln 2+2\ln x}x\to 0$$ So the limit is zero by squeezing.