Let the circle's center have coordinates $(h, k)$ and radius $r$. Then the points with $y$-coordinate $y_0$ (if there are any) have $x$-coordinates that satisfy the equation
$$ (x-h)^2 + (y_0-k)^2 = r^2 $$
The only unknown here is $x$, so we write
$$ (x-h)^2 = r^2-(y_0-k)^2 $$
and then
$$ x-h = \pm \sqrt{r^2-(y_0-k)^2} $$
Finally, we add $h$ to both sides to get
$$ x = h \pm \sqrt{r^2-(y_0-k)^2} $$
This will yield two (real) solutions when $r > |y_0-k|$, one solution when $r = |y_0-k|$, and no (real) solutions when $r < |y_0-k|$, where $|z|$ is the absolute value of $z$.
Pseudocode is
if (r < fabs(y0-k))
return {NaN};
else if (r == fabs(y_0-k))
return {h};
else {
d = sqrt(r^2-(y0-k)^2);
return {h-d, h+d};
}