The (sub)group of units in $\mathbb{Z}/n\mathbb{Z}$ is the group $\left(\mathbb{Z}/n\mathbb{Z}\right)^\times=\\{\overline{a}:\gcd(a,n)=1\\}$. This group has $\phi(n)$ elements.
A number $r$ is called a primitive root if $\overline{r}$ is a generator of this group $\left(\mathbb{Z}/n\mathbb{Z}\right)^\times$, this is the same as saying that the order of $r$ mod $n$ is $\phi(n)$ (i.e. if $r^{m}\equiv 1\pmod n$, then $\phi(n)|m$).
So, when you have $r^{\operatorname{ind} 1}\equiv 1\bmod n$, this implies that $\phi(n)|\operatorname{ind} 1$.