Since $\ln a$ and $\ln x$ are negative- we can solve via the complex logarithm: $$ \ln(r\cdot e^{i\theta})=\ln r+i\theta $$ Trick: $e^{i\pi}=-1$
Hence: $$ \ln(-r)= \ln r+i\pi $$ For better calculating: $$ \ln(y)\rightarrow \ln(|y|)+i\pi ;y<0 $$ This way: $$\log_a(\log_ax)=\frac{1}{\ln a}\cdot \ln\left(\frac{\ln x}{\ln a}\right) = \frac{1}{\ln a} \cdot [\ln(\ln x)-\ln(\ln a)] $$
Note that:$$ \ln(\ln x)-\ln(\ln a)=\ln(|\ln x|)+i\pi-(\ln(|\ln a|)+i\pi)=\ln(|\ln x|)-\ln(|\ln a|) $$
Hence: $$\log_a(\log_ax)=\frac{1}{\ln a}\cdot [\ln(|\ln x|)-\ln(|\ln a|)] $$