$ \| A B \| = \sum_r \sup_j |\sum_k a_{j,k} b_{k,j+r}| $
$ \leq \sum_r \sum_k |a_{j(r),k}| |b_{k,j(r)+r}| $ \--- $j(r)$ is where the $\sup$ is attained (possibly up to $\epsilon$...)
$ = \sum_r \sum_k |a_{j(r),k+j(r)}| |b_{k+j(r),j(r)+r}| $
$ = \sum_k \sum_r |a_{j(r),k+j(r)}| |b_{k+j(r),j(r)+r}| $
$ \leq \sum_k \sup_j |a_{j,k+j}| \sum_r |b_{k+j(r), j(r) + r}| $
$ \stackrel{r = r' + k}{=} \sum_k \sup_j |a_{j,k+j}| \sum_{r'} |b_{k+j(r'+k), k+j(r'+k) + r'}| $
$ \leq \sum_k \sup_j |a_{j,k+j}| \sum_{r'} \sup_\ell |b_{\ell, \ell + r'}| $