Suppose we have the following linear matrix equation in $\mathrm X \in \mathbb R^{n \times p}$
$$\rm A X = B$$
where matrices $\mathrm A \in \mathbb R^{m \times n}$ and $\mathrm B \in \mathbb R^{m \times p}$ are given. Vectorizing) both sides, we obtain a system of $m p$ linear equations in $n p$ unknowns
$$\left( \mathrm I_p \otimes \mathrm A \right) \, \mbox{vec} (\mathrm X) = \mbox{vec} (\mathrm B)$$
or, less economically,
$$\begin{bmatrix} \mathrm A & & & \\\ & \mathrm A & & \\\ & & \ddots & \\\ & & & \mathrm A\end{bmatrix} \begin{bmatrix} \mathrm x_1\\\ \mathrm x_2\\\ \vdots\\\ \mathrm x_p\end{bmatrix} = \begin{bmatrix} \mathrm b_1\\\ \mathrm b_2\\\ \vdots\\\ \mathrm b_p\end{bmatrix}$$