$t$ measures the angle through which the wheel has rotated, starting with your point in the "down" position. Since the wheel is rolling, the distance it has rolled is the distance along the circumference of the wheel from your point to the "down" position, which (since the wheel has radius $r$) is $rt$. So the centre of the wheel, which was initially at $(0,r)$, is now at $(rt,r)$. Your point is displaced from this by $-r\sin(t)$ horizontally and $-r\cos(t)$ vertically, so it is at $(rt - r\sin(t), r - r\cos(t))$.