_No_ : For a local ring $(R,{\mathfrak m})$ with ${\mathfrak m}^2=0$ you have $\text{Hom}_R(R/{\mathfrak m},R)\cong\\{x\in R\ |\ {\mathfrak m}x=0\\}={\mathfrak m}$, so it suffices to choose $R$ such that ${\mathfrak m}$ is not finitely generated, e.g. $R := {\mathbb k}[x_1,x_2,\ldots]/(x_i^2, x_i x_j)$.