A classical result of Eagon and Northcott says that $$\operatorname{height}(I_r(\varphi))\le (m-r+1)(n-r+1).$$ Since $\operatorname{Fitt}_k(M)=I_{n-k}(\varphi)$ we have $$\operatorname{height}(\operatorname{Fitt}_k(M))\le(k+1)(n-m+k+1).$$
A classical result of Eagon and Northcott says that $$\operatorname{height}(I_r(\varphi))\le (m-r+1)(n-r+1).$$ Since $\operatorname{Fitt}_k(M)=I_{n-k}(\varphi)$ we have $$\operatorname{height}(\operatorname{Fitt}_k(M))\le(k+1)(n-m+k+1).$$