$$\sum_{r=1}^{n}\frac{r^2}{n^3+r^2}\leq \frac{1}{n}\sum_{r=1}^{n}\left(\frac{r}{n}\right)^2 \to \int_{0}^{1}x^2\,dx = \frac{1}{3} $$ and $$\sum_{r=1}^{n}\frac{r^2}{n^3+r^2}\geq \frac{n^3}{n^3+n^2}\sum_{r=1}^{n}\left(\frac{r}{n}\right)^2 \to \frac{1}{3}.$$ Essentially, the $r^2$ term in the denominator is negligible (with or without Riemann sums).
We cannot state the same for $$ \lim_{n\to +\infty}\sum_{r=1}^{n}\frac{r^2}{n^3+r^{\color{red}{3}}}=\lim_{n\to +\infty}\frac{1}{n}\sum_{r=1}^{n}\frac{\left(\frac{r}{n}\right)^2}{1+\left(\frac{r}{n}\right)^3}=\int_{0}^{1}\frac{x^2\,dx}{1+x^3}=\frac{\log 2}{3}. $$