Well, let's begin by identifying the poles of the function. First the denominator factors as $$z^2(z^2 + z - 2) = z^2(z+2)(z-1)$$ We can partial fraction to decompose the integral into $$\oint_{C_3(0)}-\frac{7}{2z^2} -\frac{9}{4z} - \frac{5}{12(z+2)} + \frac{8}{3(z-1)}\ \rm dz$$ We can easily read off the residuals here $$\sum\operatorname{Res}(f,\ \alpha)=-\frac{9}{4}-\frac{5}{12} + \frac{8}{3} = 0$$