For any $x\in(0,\pi)$ we have
$$ \frac{\sin x}{x(\pi -x)} = \frac{1}{\pi}+K x(\pi-x),\qquad K\in\left[\frac{1}{\pi^3},\frac{4(4-\pi)}{\pi^4}\right] \tag{1}$$ hence
$$ \int_{0}^{\pi}x^n\sin(x)\,dx = \frac{\pi^{n+2}}{(n+2)(n+3)}+\pi^n O\left(\frac{1}{n^3}\right)\tag{2}$$ due to $\int_{0}^{\pi}x^\alpha(\pi-x)^{\beta}\,dx = \pi^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}$.