The formula :
> (2) $(¬g \lor s_1) \land (¬g \lor s_2) $
is equivalent to [recall that : $p \lor F \equiv p$ and $p \land \lnot p \equiv F$]:
> $[(¬g \lor s_1) \lor (s_2 \land ¬s_2)] \land [(¬g \lor s_2) \lor (s_1 \land ¬s_1)]$.
By Distributive property we have :
> $(¬g \lor s_1 \lor s_2) \land (¬g \lor s_1 \lor ¬s_2) \land (¬g \lor s_1 \lor s_2) \land (¬g \lor ¬s_1 \lor s_2)$.
Removing the repeated term we have :
> > (1) $(¬g \lor s_1 \lor s_2) \land (¬g \lor s_1 \lor ¬s_2) \land (¬g \lor ¬s_1 \lor s_2).$